Making Better Places

A citizens' guide
to assessing existing neighborhoods
and proposed developments
in Northeast Ohio

Prepared by
EcoCity Cleveland
and
The Urban Design Center of Northeast Ohio
School of Architecture and Environmental Design
Kent State University
Foreword
by Ruth Durack

Reflections
Urban Quality: In Search of a Shared Notion ........................................... 3
by Maurizio R. Sabini, PhD, AAIA

The Language of Development .............................................................. 9
by Mark L. Gillem, ALA, AICP

What We Like:
Finding Our Common Design Language ............................................. 19
by David Beach

Images from the Western Reserve:
What People Like and Why ................................................................. 23

Guidelines for Better Places ................................................................. 47

Scoring Your Neighborhood ............................................................... 75

Glossary ......................................................................................... 89
Foreword
by Ruth Durack

Since the 1960s and '70s, when people started to demand a stronger voice in the decisions affecting their communities, public participation has become a routine part of the planning and development process. Community meetings are held throughout the planning of public projects; public hearings are mandated for all zoning changes; council hearings on major private developments are open to the public, as are formal design review and planning commission presentations. But despite the numerous opportunities for public input, we are frequently disappointed by the results of these processes, and there is growing dissatisfaction with the quality of the environments in which we live and work.

This is partly the fault of an apathetic public which is either unaware of the opportunities to speak, or feels it is pointless to do so in the face of powerful political and development interests. But even when people do participate, they often have difficulty describing the characteristics of the kinds of places they like, or articulating how they want their neighborhoods to develop. Responding to the proposals presented by developers and their architects is especially challenging. Most people have no training to help them interpret the drawings of proposed projects, or the technical jargon that developers and designers frequently use to explain them. Too often people don't engage in debate about a proposed development because they don't know what questions to ask, or are simply intimidated by the unfamiliar vocabulary of design experts.

This little book is an attempt to demystify the discussion of good places. It breaks down the neighborhood into its constituent parts and identifies the characteristics of those that the people of Northeast Ohio have shown they prefer. Our primary purpose is to encourage people to look more critically at the places they inhabit and to think about what works, what doesn't, and how these places could be improved.

By becoming more familiar with the components of a neighborhood and the characteristics that influence their quality, we hope that the residents of this region will start to demand higher standards in new development and the revitalization of older towns and neighborhoods. To get what we want, we need to be able to say what we want; and that means playing a more active and effective role in the planning and design processes that affect our quality of life—because we believe that the design of urban places is a collective enterprise, for which we are all responsible, and to which we all have something to contribute.
Reflections

Cleveland, OH
Urban Quality:
In search of a shared notion

by Maurizio R. Sabini, PhD, AAIA

The “functional city” of 20th century Modernism has long since ceased to meet people’s expectations of a better urban life. The Modernists assumed that to make a better city, it was necessary to organize the basic functions of modern life as separate systems, dividing the city into specialized areas for working, dwelling and recreating, with efficient circulation systems for moving from one area to another. This model, along with the zoning regulations set up to implement it, has proved invalid. Although the concept produced some degree of efficiency, the cities and neighborhoods that have resulted from decades of Modern planning are not conducive to the interaction of people and have contributed to the social disintegration of communities.

The “suburban sprawl” of the United States, the “diffused city” of Europe and the “placeless” megalopolis of less developed countries are only different terms for the worldwide failure of Modern urbanism. The evolution of towns and cities into formless, regional conurbations, supported by the availability of cheap land and the enduring dream of a single family home, is creating an increasingly unsustainable world. Likewise, the mutation of cities into heartless “machines” shaped by infrastructure and economic policy, and the blind application of Western planning models in developing countries, is exacerbating the global challenge of explosive population growth. In the United States particularly, suburban sprawl has produced disconnected communities, increasingly distressed commuters, abandoned downtowns and declining urban neighborhoods.

The New Urbanism movement in the United States offers a form of resistance to these prevailing trends by focusing on a richer, more articulated architecture, creating buildings and open spaces with a human scale, streets that give pedestrians priority over the automobile, and places that relate to community traditions and memory. Building on the lessons of historic European cities and American urbanism pre-World War II, New Urbanism is proposing alternatives to suburban sprawl in new development and ways to retrofit existing suburbs into more livable communities by making them denser, more walkable and well supplied with open space and a variety of neighborhood amenities—all designed in response to a shared notion of what makes a beautiful neighborhood.

Introducing his seminal book, Home from Nowhere, which outlines the philosophy and principles of New Urbanism, James Kunstler observes: “A consideration of these issues leads ineluctably to the condition we call ‘beauty’, which for too long has been dismissed as an insoluble mystery of ‘taste’, or, worse,
relegated by the academic avant-garde to the dumpster of irrelevance. When intellectuals take the position that beauty is a subject beneath discussion, it seems to me that a culture is in real trouble. I wish to readmit the discussion of beauty to intellectual respectability."—and, I would add to social and cultural relevance.

We cannot, however, simply imitate urban environments of the past. Replication of traditional architectural images, building types and streetscape elements is actually a limitation of the New Urbanists’ vision: a half-right answer to the right question.

The planning and design of new developments and improvements to existing areas must speak to the community’s collective memory of good towns and cities—and a shared image of appropriate architectural style. A community’s agenda, however, should also include a search for new interpretations of urban space, building types and architectural images that relate more directly to the changing needs of contemporary life. Again Kunstler:

“What’s missing is a more widespread consensus—i.e. cultural agreement—in favor of the new model [or “new models”, as I would say] and the will to go forward with it. Large numbers of ordinary citizens haven’t heard the news. They’re stuck in old habits and stuck in the psychology of previous investment, and political leadership reflects this all over America. NIMBYism is one of the results, a form of hysterical cultural paralysis. Don’t build anything, don’t change anything! The consensus that exists, therefore, is a consensus of fear, and that is obviously not good enough. We need a consensus of hope."

But how can we build such a consensus? How do we define a collectively held notion of “urban quality”?

In the past, architects and urbanists, acting alone as “experts” or intellectuals, have offered various conceptions of “urban quality”. The City Beautiful movement, for example, posited a notion of the “beautiful city” as a masterful arrangement of civic and private buildings around grand public spaces, with a unified architectural character—preferably classical. Alternative conceptions include the “imageable city”—a city with a highly structured urban form, capable of evoking a strong image in any observer—or Aldo Rossi’s artistic construct—that argued that a city should be considered in its entirety as a work of art, where its value depends primarily on the quality of its architecture.

More recently, Michael Sorkin has proposed a series of “desires” (or what I would call “performance requirements”) for the good city: democratic space (a city equally enjoyable by everyone), intimacy (the human body as the measure), memory, privacy, ecology, sustainability, mystery (providing for the unexpected), artistry, conviviality and diversity.

All these and other definitions of a good city are important and extremely useful in the search for higher degree of urban quality. In architecture and urbanism, however, there is no recipe—no users’ manual (and, alas, no “charter”) that can guarantee good results.

After centuries of experiment and a plethora of urban theories, even the most talented architects and planners have developed cities that have failed dramatically. Brasilia, for example, the new capital of Brazil, remains a monument to Modernism’s “urban illiteracy”; Rem Koolhaas’s Euralille, in northern France, is an intellectual hallucination, realized at the expense of alienating its inhabitants; while Seaside, on the coast of Florida, inevitably found its celebration as a virtual world in the virtual reality of a movie. On the other hand, scores of American small towns, whose urban structures were laid out by surveyors or military officers following the traditional models of English or Spanish towns, still work today as lively and efficient urban places, adapting to changing lifestyles without destroying their original qualities. These towns are beloved by their inhabitants and appreciated by visitors.

Urban quality today is constructed of a mix of public and private interests, of regulated and uncontrolled development, of vast infrastructure projects, of past imagery and future visions: a mix as complex as contemporary life. Increasing expectations with respect to living standards demand an intelligent planning approach that builds on the lessons of the past, embraces the lifestyles of the present, and engages the community in an optimistic consideration of the future.

As history has shown, urban quality is seldom derived from the theories and experiments of architects, planners and developers, however carefully they draw from the lessons of the past, as in the case of the New Urbanists. Real urban quality today can only emerge from a constant social and cultural dialogue, activated within each community as a process, not as a pre-determined set of principles. Each place and community needs to develop its own urban identity and
standards of quality, based on shared aspirations and values which are constantly evolving—as life itself.

The search for urban quality, after all, is not so difficult, if only one looks around with a critical eye and is willing to learn from the existing environment and the lessons of the past. As Kunstler has commented on Cleveland's Church Square development between Euclid and Chester Avenues at East 89th Street:

"The whole package couldn't have been more poorly designed for this particular site. In fact, it might not have been designed at all—merely expropriated full-blown from some existing suburban site elsewhere and air-dropped into place as a module. (...) The appropriate model for neighborhood development still exists in Cleveland for anyone who opens his/her own eyes or wanders around town with a tape measure. (...) The streets alone instruct you what to build. There are photographs and drawings in the Cleveland public library of mixed used developments that once stood on these rubble fields."

To orient ourselves, it is enough to look at good streets or to recall, for example, the urban energy of Euclid Avenue when it was Cleveland's grand main street. Historically, Euclid Avenue was a perfect example of this typically American urban space, bustling with people and traffic, where mixed use buildings were not the exception but the norm—a major "urban nerve" intertwining public services and private activities, blurring the boundaries between public and private realms.

Or to appreciate good public squares, we only need to look at the one in Chardon, Geauga County, where around the beautifully landscaped public green (typical of many small towns of this region), is gathered a "community of buildings": the Courthouse on the green—a solid beacon of civic virtues, the school, the public library, the fire station, two churches, the movie theater, and a score of low-rise mixed use buildings, old and new all coming together in a harmonious whole. Intoxicated by this urban quality, even the bank looks like a school or any other civic building. What is more interesting is how clearly shared is the notion that the local community holds about the quality of their prime urban space. As it reads on the Chardon's Square Business District Historical Marker (erected in 1997): "The district is significant, in part, because the late XIX century structures are unusually harmonious in design and in their relationship to one another. The people of Chardon love their square and it shows.

4 James H. Kunstler, op.cit., p114.
8 "The Van Alen Institute Symposium on Urban Design", Columbia University, New York, April 5-6, 2002 (proceedings forthcoming).
9 Brasilia was planned and built in the 1950s by Lucio Costa and Oscar Niemeyer, exemplary followers of Le Corbusier's philosophy of modern architecture and urbanism. Euralille, a new transportation, business and cultural center for the city of Lille, was planned by Dutch architect Rem Koolhaas and built in the 1990s in co-operation with a team of internationally renowned architects. Koolhaas considers, in his own words, Euralille "a celebration of the ugly" (as a provocative statement of Modernity against the "beauty" of the old city). Seaside, planned and built by New Urbanism's main advocates Elizabeth Plater-Zyberk and Andres Duany in the 1980s, and considered the archetype of New Urbanist town planning, was used as the set of the movie The Truman Show.
The Language of Development

by Mark L. Gillem, AIA, AICP

Northeast Ohio is blessed with a beautiful natural environment and a long list of attractive cities, suburbs and towns: from Lake Erie to the Cuyahoga Valley National Park; from Cleveland’s revitalized warehouse district to Akron’s new downtown stadium; from the bungalows of Cleveland Heights and Bay Village to the town squares of Medina and Hudson.

But all of these places are in danger of being overwhelmed by the rampant suburban development occurring in every county in the region. For example, the charming country roads now found in Geauga and Medina counties may soon turn into clogged arterials lined with parking lots and strip malls. The rolling fields of Portage and Summit counties may soon be enveloped by a tidal wave of tract homes and apartment complexes. And the beautiful first-ring suburbs of Shaker Heights and Lakewood may experience decline and disinvestment.

Why, despite a long history of creating remarkable places, will these unsettling changes occur? If you’ve kept up with the latest debates in planning and architecture, you may think you know the answer: suburban sprawl. However, sprawl is only the symptom. And, as with any symptom, sprawl can be easily measured. In fact, sprawl can be measured in just four ways:

1) low-density, single-use development (Think of residential subdivisions with houses on acre lots or the big box “power retail” centers surrounded by oceans of asphalt that are rarely half full);
2) isolated land use patterns that unnaturally segregate even compatible uses like residential and retail areas (Just go visit Streetsboro where the stores are in “retail strips” isolated from neighborhoods);
3) automobile-oriented design (Have you ever tried to walk to a Home Depot?); and
4) uncontrolled outward growth (I lost count of the “Land For Sale: Will Build to Suit” signs in the seven county region – and who will these developments suit anyway?)

The real disease

If sprawl is the symptom, what then is the actual sickness? The sickness is an inability to communicate and act on our real dreams and desires for better places to live, work and play.

Oddly enough, our grandparents were not afflicted with this damaging disease. After all, they built the places most of us love, from the town center of Chardon
to the tree-lined streets of Wadsworth. Over the last 60 years, however, the common language that was used to build these wonderful places has been lost. And without a shared language for development, chaos reigns supreme.

Like the people of Babel, we have been dispersed into a thousand factions speaking individual and incoherent languages. Developers talk about “return on investment” and “highest and best use.” Real estate agents talk about “resale value” and “curb appeal.” Bankers talk about “balloon payments” and “interest rates.” Transportation engineers talk about “vehicle miles traveled” and “capacity per hour.” Planners talk about “land use zones” and “floor-to-area-ratios.” Architects talk about “deconstruction” and “design-build.” And politicians talk about “re-election” and “quality of life.”

Unfortunately, no one talks in terms that you and I can understand. Simple phrases (and the concepts such phrases represent) like town square and shady boulevard have been swept away in the flood of specialized and incompatible languages used by a growing number of so-called experts.

Architect and planner Christopher Alexander writes about this problem in two of the best books on development ever published: The Timeless Way of Building and A Pattern Language. In the latter, he writes that “towns and buildings will not be able to come alive, unless they are made by all people in society, and unless these people share a common pattern language, within which to make these buildings…” Without such a common language, we are destined to build more places that inspire no affection in our hearts.

A price to pay

As you may have guessed, there is a high price to pay for such development. From an environmental standpoint, 100,000 acres of wetlands and 1 million acres of open space are destroyed every year to support sprawling development nationwide. Our cars and trucks spew 12 billion pounds of chemicals every year so that we can drive to work, then to the grocery store, then back home. As Maryland Governor Parris Glendening noted, “If we, or any other state, continue with the same sprawling patterns of development over the next 25 years at the same rate as the last 25 years, we will consume more open space, tear down more woodlands, and pave over more farms than we did in the previous 365 years of the state’s existence.”

From a financial standpoint, sprawl costs all of us. Existing investments in infrastructure in the existing urban areas of Northeast Ohio are left underutilized while new roads, sewer treatment plants, and power stations are built in the exurbs adjacent to I-271 and I-76. Nationwide, the current patterns of development force us to drive eight times more per capita than we did in 1983—and 70 percent of this increase in driving is directly linked to sprawl. Families now need two, three or more cars even to survive. In many neighborhoods, walking to the store or to work is simply not an option. With an average expense of $6,000 per car per year

according to the American Automobile Association, these extra cars are costing families both time and money.

Imagine if families could live in neighborhoods with effective transit or within walking distance of work, retail, and recreation areas. They might be able to get by on one car instead of two. One clear benefit: a family with a median income (1999) of $47,800 looking for a home would have $50,000 more buying power. That’s quite a bit more house!

Families aren’t the only victims of sprawl. Municipalities suffer as well. For example, in Milwaukee, a new single-family home in the suburbs pays on average $5,000 in property taxes but costs the city almost $10,000 in municipal services. That’s why property taxes on existing homes may rise even when new homes are built in the same municipality. However, in attractive, higher density developments, like those found in sections of Lakewood, the ratio is about even.

Social costs

Sprawl also has severe social costs. Nearly every week national publications, from Time to USA Today, publish stories lamenting the loss of community in America today. While defining community can be difficult, creating one can be even harder in today’s sprawling suburbs. In The Fall of Public Man, Richard Sennett writes about the precipitous drop in the actual places where
communities can grow. And sociologist Ray Oldenburg, in his book The Great Good Place, argues that the lack of places in today’s urban areas supportive of informal interaction has created deficits in public life. By his estimates, the United States has lost half of the informal gathering places that existed in the 1950s. The disappearance of cafés, taverns and corner stores has implications for community life. Oldenburg writes that “Experiences occur in places conducive to them, or they do not occur at all. When certain kinds of places disappear, certain experiences also disappear.”

Likewise, in suburbs without town squares, sidewalks, and front porches, residents are more likely to spend their time ensconced in their cars and ‘great rooms’ rather than in the public realm building community. As Wolf Von Eckardt argues, “What ails us—most of us anyway—is not that we are incapable of living a satisfactory and creative life in harmony with ourselves, but that our habitat does not offer sufficient opportunities. It hems us in. It isolates us. It irritates us.”

What does this isolation and irritation lead to? For one, sociologists cite isolation and boredom as contributing factors in the dramatic rise of teenage suicide, almost unheard of 50 years ago. In fact, national rates of teenage suicide are lower in urban areas than in suburbs. And the “soccer mom” syndrome, with mom spending her precious time shuttling kids back and forth from school to soccer practice to Boy Scout meetings, would be alleviated if Johnny could simply walk to these places. A letter (reproduced in Suburban Nation: The Rise of Sprawl and the Decline of the American Dream) to town planners and architects Andres Duany and Elizabeth Plater-Zyberk, sums this up best:

Dear Architects:

I am a mother of four children who are not able to leave the yard because of our city’s design. Ever since we moved here I have felt like a caged animal only let out for a ride in the car. It is impossible to walk even to the grocery store two blocks away. If our family wants to go for a ride we need to load two cars with four bikes and a baby car and drive four miles to the only bike path in this city of over a quarter million people. I cannot exercise unless I drive to a health club that I had to pay $300 to, and that is four and a half miles away. There is no sense of community here on my street, either, because we all have to drive around in our own little worlds that take us 50 miles a day to every corner of the surrounding five miles.

What is working?

Given the social, fiscal, and environmental costs of our dreadful development practices, what can be done? Since the real problem is the loss of a common language for development that all of us understand, agree with and support, we need to recapture that language. We need to develop a shared vocabulary for design and construction that can guide future physical development.

To do this, we first need to look around our cities, suburbs, and towns and ask three questions: What is working? Why is it working? Where can it work in the future?

For example, many people I talked with during my recent research in Northeast Ohio lauded the numerous small towns with their town centers. From Lodi to Painesville, we know town centers, with their mix of uses, public greens, and increased density of development work exceedingly well. They work because they meet our deep need to have a central public place in every town where we can gather to be part of a community.

Now, how can a broad and diverse community define and come to agreement on the principles or words required to make up a shared language for development? One approach is to begin by conducting what I call a Built Environment Rating.
The concept is straightforward: simply go out and take pictures of the existing built environment in your neighborhood or city and arrange them in a sequence so that community members can rate the images. Professor Anton Nelessen of Rutgers University pioneered the technique, and he suggests in his book *Visions for a New American Dream* that “Images must reflect what people see when they walk along streets, sidewalks, and public spaces….The purpose is to review a sufficient number of images so that a common preference and consensus vision begin to emerge.”

This is in fact what we did during the EcoCity Cleveland workshops that formed the basis for this book. Using a set of 80 images from across the region (taken out of an image bank of over 400 images), we had workshop participants rate each image on a scale of +10 to −10. We asked each person to rate those images they liked as positive and those they disliked as negative. We then took the average for each image as well as the standard deviation and found those positively rated images where there was nearly unanimous agreement. From there, we then developed 47 principles that can be used to guide development throughout the region.

**More Shaker Squares**

A collaborative process like this can lead to design solutions that respond to the true desires of the community. What emerged in our study is a language made up of principles that would create more places like Shaker Square and fewer places like Rockside Road. These places would be more compact, have walkable neighborhoods, and incorporate a mix of uses (shops, offices, residences) in a town center.

While this process may sound overly simplistic, it is a process that is thankfully already underway in this region. Locally, groups like EcoCity Cleveland, First Suburbs Consortium, the Urban Design Center of Kent State University, and the Preservation Resource Center of Northeast Ohio are leading the way. Nationally, groups like the Congress for New Urbanism and the National Trust for Historic Preservation are also making a difference.

This national outlook is quite appropriate. People across the nation prefer more compact development following principles similar to the ones we developed in November. A recent survey by Smart Growth America found that 78 percent of Americans support policies to curb sprawl, and 77 percent support making neighborhoods more pedestrian-friendly instead of building new highways. In my own work, I have found that no matter where I am, whether in the southeast or northwest, the results of Built Environment Ratings are similar. This is not remarkable, since we all have similar basic needs and we share many common values.

**Shared principles**

Building neighborhoods rather than subdivisions would minimize many of the social, fiscal, and environmental problems associated with sprawling development. Across the nation, neighborhoods are in fact being built following principles similar to those we developed in our workshops. Since these principles emerge from a careful analysis of neighborhoods usually built before 1940 (neighborhoods built after that seem to be less successful), the developments they have spawned have been called “neo-traditional developments” and “new urbanism.”

Studies have found that residents in “new urbanist” communities have more social contacts, and they do indeed walk more and drive less. In my own case, I walk nearly everywhere now that I live in an older first-ring suburb of the San Francisco Bay Area built using a common language of development that stressed walkability and mixed uses. My office, our church, the grocery store, bank, post office and library are all within a short walk of our home. A few years ago when I lived in a suburb of Dayton, Ohio, I drove more miles in a day than I do in a month now.

Even the American Medical Association recognizes the benefit of the walkable communities that this common language creates. With more than half of all adults overweight, the AMA Journal calls obesity an epidemic and claims that “car trips have replaced trips that used to be made on foot or bicycle, and helping people get back to walking or biking should be a first target in combating the obesity epidemic. Reliance on physical activity as an alternative to car use is less likely to occur in many cities and towns unless they are designed or retro-fitted to permit walking or biking.”

In addition to providing a host of health and environmental benefits, these new urbanist neighborhoods sell quite well. Research done at George Washington University by Professors Mark Eppli and Charles Tu found that homeowners are willing to pay more for homes in new urbanist communities. When controlled for such variables as lot size, age, construction quality and school district, the average
home in such a community commanded a $20,189 premium compared with those in conventional developments. The report found that physical attributes of a neighborhood are figuring more into people's decision to purchase a home. For the skeptical real estate agents and developers out there, this shows that good design sells.

Sadly, it is extremely difficult to build better neighborhoods following the principles we developed. Some of the best places in the region, like Hudson and Cleveland Heights, could not be built today because of planning and zoning codes. The streets are too narrow; buildings are too close to the street; retail, residential, and commercial areas are mixed; and people live above restaurants and shops.

To permit the development people want, planning and zoning codes need to be changed; financing mechanisms need to be improved; and development practices must change — which brings us back to where I began. In the end, by using techniques like the Built Environment Rating to develop design principles, we can create a shared language of development. With this language, we can once again build places even our grandparents would be proud to call home.

To build better places in Northeast Ohio:

- Protect green space and watersheds
- Build walkable/bikable neighborhoods
- Strengthen mass transit
- Improve lakefront access
- Preserve rural character
- Conserve historical structures
- Increase diversity of housing options
- Mix compatible uses
- Save and enhance tree canopy
- Support infill development
- Concentrate development
What We Like:
Finding a common language of design

by David Beach

As you travel around Northeast Ohio and look at the changing landscape, do you like what you see? If you're like many of the people we talk to at EcoCity Cleveland, the answer is no.

You are disturbed by the rapid loss of our rural countryside and wish that more could be done to redevelop our older urban areas. You wonder who in the world is buying all those ostentatious new homes on five-acre lots. And you are depressed by the sheer ugliness of the automobile-dominated sprawl of fast food joints, gas stations, and big box retail stores.

Some sights may please you – a lovingly restored century home, a walkable neighborhood street, a redeveloped brownfield in the city, or a dignified church that frames a public space. But, in the balance, there is a sense that change is eroding the quality of life of many communities.

At EcoCity Cleveland we spend a lot of time trying to understand why this is so. And we try to give people the ideas and language they need to know what they don't like – and to articulate their vision of a better future. With our Citizens’ Bioregional Plan project, for example, we helped citizens understand how Northeast Ohio could develop differently at the regional, metropolitan scale. (For more information about EcoCity Cleveland and its projects, see www.ecocitycleveland.org)

Recognizing what we like

More recently, we have undertaken a project to articulate how people want to develop at the scale of the neighborhood, street, and building. This project, “What We Love…and What We Don’t: Images of the Western Reserve,” used photographic images of locations in the seven-county region to help people recognize the landscapes, street scenes and buildings they prefer. The idea is that people generally know what they like when they see it. And they can then translate their preferences into principles of good design. Here is how the project unfolded:

We identified a consultant, Mark Gillem, who has experience leading community groups through ratings of their built environment. Several years ago, Gillem did a similar exercise for residents in Medina County. Although he is now working as an architect in Berkeley, CA, he is very familiar with the Ohio landscape.
Over a period of several months, EcoCity staff collected suggestions of places in Northeast Ohio that people especially liked or didn’t like. We tried to get a sense of the kinds of places—whether residential streets, commercial strips, or industrial parks—that provoke strong reactions. We also recruited more than a dozen cosponsoring organizations, who agreed to help us publicize the project.

Gillem then spent four days photographing locations in Northeast Ohio. Using our list of sites as a starting point, he drove over 1,000 miles and took 20 rolls of film. He also interviewed representatives of the cosponsoring organizations and other people involved in land use and development.

Gillem distilled the photos down to 40 pairs of images that represented the diversity of landscapes in the region. He didn’t necessarily choose the best and worst examples of each type of place. Rather he chose images that illustrated what was going on in each type of place—images that would help people understand the underlying design principles at work.

Then we sponsored an interactive workshop at which participants scored the images. More than 70 people spent a Saturday morning discussing the images and developing planning and design principles appropriate for guiding the region’s future growth. They asked, “What is working? Why is it working? Where can it work in the future?”

The following Tuesday evening, we presented the results in a public show at Cleveland State University. Attendees were given a detailed score sheet for evaluating places in their own communities.

The images from this project have formed the basis for this book.

**Design consensus**

Our workshop revealed that there is a high level of consensus about the kinds of places people like. People want shady residential streets and houses with front porches. They want walkable commercial districts with buildings that define and respect the street. They want town squares and other inviting public spaces for community gatherings.

These preferences are consistent across the country, Gillem told us. “From Tucson to Charleston, we have agreement on what we like.”

The trouble is that we’re not getting what we like. Much of the new development in Northeast Ohio does not reflect our preferences. It seems that, in practice, we have lost our common language of design. We have forgotten how to create a pleasing built environment—places that feel right.

Getting it right does not require rocket science. It’s a matter of basic design principles—scale and proportion and function. It’s a matter of making tree lawns of a certain width, planting street trees at proper intervals, constructing roads narrow enough to be crossed easily, or locating destinations in convenient proximity.

The fact that we are getting ugly strip malls instead of charming retail streets is not always the fault of developers. It’s often the fault of our communities’ zoning codes, building codes, and transportation investments, which are biased toward increasing the mobility of cars rather than creating pleasing places for people. We have created regulations that require new suburbs to be built as places completely dominated by congested roads and parking lots. And we are allowing historic older communities, which were originally built to the compact scale of the pedestrian and streetcar, to be bulldozed and replaced by the same, generic, automobile-centric sprawl.

**A new visual code**

We can do better. If we can agree on good design, then we should be able to write our zoning and building codes to promote what we like. Indeed, there is a growing national movement to do just that. Whether the movement is called “new urbanism” or “smart growth,” it’s about creating livable communities for people.

The photos and score system in this book are intended to help citizens in Northeast Ohio understand what they want for their communities and evaluate development projects based on their preferences. We encourage people to use these tools and get involved in the planning discussions in their communities.

**The importance of design**

It’s important to fight for good design. High standards communicate that our communities are worth caring about. The quality of our buildings and streets sets the stage for our social interactions. Lively urban neighborhoods help attract the high-tech workers that will make Northeast Ohio more competitive in the new economy. And environmental quality depends a great deal on how wisely we develop land and redevelop our cities.

If we can articulate what constitutes good design, we can build communities that will last.
Images from the Western Reserve:
What people like and why

Downtown Amherst, OH
Public Squares

From the 2000 EcoCity Workshop:

Average score: +7.7 (standard deviation 2.5)

- mix of uses
- comfortable building scale (2 stories)
- well proportioned space (high street section ratio)
- attractive urban furnishings (lamp posts, flower boxes, trash cans etc.)
- pedestrians have priority over cars
- variety and harmony in the architecture

See Guideline 1.1, pp48-49
Regional examples:

- Major traffic artery: 2-3 lanes in each direction
- Intersections regulated by traffic lights
- Limited curb cuts
- Street trees on both sides
- Regularly spaced street trees
- Continuous sidewalks on both sides
- Underground utilities
- Terminated by a landmark building

See Guideline 2.1, pp. 52-53
Boulevards

From the 2000 EcoCity Workshop:

Entry boulevard
Mariemont

Average score: +6.3 (standard deviation: 3.4)
- dense landscaping
- many shaded areas
- quiet residential character
- relatively slow traffic

... other regional examples:

Fairmount Boulevard
Cleveland Heights

Euclid Heights Blvd
Cleveland Heights

Larchmere Boulevard
Cleveland Heights

See Guideline 2.2, pp.52-53
Main Streets

From the 2000 EcoCity Workshop:

Main Street
Garrettsville

Average score: + 7.8 (standard deviation: 2.3)
- mix of uses
- good street section (2 traffic lanes + angled on-street parking)
- comfortable building scale (2 stories)
- variety and harmony in the architecture
- highly articulated building facades
- rich architectural details (mouldings, cornices, pilasters)
- attractive storefront windows

Commercial street
Akron

Average score: + 6.2 (standard deviation: 3.0)
- mix of uses
- good street section (2 traffic lanes + parallel on-street parking)
- comfortable building scale (2 - 3 stories maximum)
- traffic calming device at crosswalk
- attractive urban furnishing (lamp posts)
- tree-lined sidewalks
- carefully detailed pavement (brick pavers, tree-grates etc.)

See Guidelines 2.3, pp54-55; 2.6-2.10, pp58-61; and 4.1-4.3, pp66-67

... other regional examples:

Coventry Road
Cleveland Heights

Larchmere Blvd
Shaker Heights

Main Street
Chardon
Residential Roads

From the 2000 EcoCity Workshop:

Residential road
Lakewood

Average score: +7.1 (standard deviation: 2.1)

- nicely landscaped road
- well proportioned sequence: treelawn – sidewalk – front yard
- on-street parallel parking on one side
- one lane in each direction
- quiet residential character

... other regional examples:

Bridge Avenue
Ohio City

Roxboro Road
Cleveland Heights

See Guideline 2.4, pp56-57
Alleys

Regional examples:

- width of a single lane of traffic
- minimum setback to buildings
- location of services (garages, utility poles, garbage cans etc)
- landscaped where possible
- well maintained and trash free

See Guideline 2.5, pp56-57
Institutional Buildings

From the 2000 EcoCity Workshop:

... other regional examples:

St. Luke's Hospital
Cleveland

Average score: + 6.1 (standard deviation: 3.3)

- strong image
- monumental character
- use of established vocabulary of "civic architecture"
- articulated but unified form
- mix of scales: large scale elements (columns and tower) and small scale elements (windows and dormers)
- landmark qualities (size, height, axial siting)

See Guideline 3.1, pp62-63

Geauga County Courthouse Chardon
Commercial Buildings

Regional examples:

- multi-level buildings lining the sidewalk
- continuous frontage of active uses at ground level
- residential or office uses above
- varied but coherent scale and architectural character
- consistent materials
- coordinated colors
- regular placement of signage and awnings

See Guidelines 4.1 - 4.6, pp66-69
Detached Houses

From the 2000 EcoCity Workshop:

Detached house
Shaker Heights
Average score: +7.7 (standard deviation: 2.4)

- clear residential character (pitched roof, chimney)
- balanced, orderly, assymmetric elevation
- clearly identifiable entry
- vertical windows (height:width ratio > 1.5)
- nicely landscaped front and side yards
- clear, direct connection to the sidewalk
- garage not prominent

Detached house
Larain County
Average score: +7.5 (standard deviation: 2.6)

Detached house
Westlake
Average score: +7.0 (standard deviation: 2.5)

See Guidelines 5.1 - 5.3, pp70-71
Townhouses

From the 2000 EcoCity Workshop:

Average score: +4.1 (standard deviation: 3.8)

- creates a strong street edge
- articulated but unified façade
- comfortable scale (3 stories)
- clearly identifiable entries
- well articulated façade with sheltered entries
- clear, direct connection to the sidewalk
- warm, textured materials

See Guideline 5.4, pp 72-73
Apartment Buildings

From the 2000 EcoCity Workshop:

- appropriate residential scale (4 stories)
- reference to traditional residential features (bay windows, pitched roofs)
- heavily articulated but unified elevation
- careful architectural detailing (cornices, eaves, window sills)
- attractive landscape setting
- garage at the back, with easy visitor parking on the street

Average score: + 7.4 (standard deviation: 2.3)

See Guideline 5.5, pp72-73
1. Squares and Parks

1.1 Public Squares

- sense of a distinct place: clear, enclosed form
- plan ratio: 1.3 maximum
- section ratio: between 1:3 and 1:10
- building facades 4 stories maximum (outside a downtown area)
- mix of uses: retail, office, institutional, residential
- unique identity: special features such as institutions and monuments
- unified image: varied but harmonious architecture
- pedestrian priority: crosswalks, traffic calming devices
- access to public transit
- open, usually landscaped, pedestrian area at the center
- variety of comfortable places to sit, with clear views to activity in and around the square
- interesting details: paving, lighting, signage, trash cans, bike racks etc.

**Plan Ratio**

![Plan Ratio Diagram]

Ratio \(x:y = 1:3\) maximum

**Section Ratio**

![Section Ratio Diagram]

Ratio \(x:y = 1:3\) minimum

Ratio \(x:y = 1:6\) preferred

Ratio \(x:y = 1:10\) maximum
1.2 Neighborhood Parks and Playgrounds

- sense of a distinct place: simple shape, clear boundaries
- harmonious scale and character of surrounding buildings
- spaces for a mix of activities, both active and passive
- activities for different age groups
- landscape designed to define different activity spaces: trees, shrubs, berms etc. defining places in the park
- variety of comfortable places to sit, with clear views to activities in and around the park
- clear views into the park from surrounding streets and buildings (for security)
- well lit pedestrian paths through the park
- pedestrian priority in streets surrounding or leading to the park: crosswalks and traffic calming devices
- access to public transit and bike paths
- interesting details: paving, lighting, signage, trash cans, bike racks
- regular maintenance to indicate community “ownership”
2. Circulation and parking

2.1 Arterials

High volume streets connecting between different neighborhoods or major nodes of activity throughout the city

- no more than 3 lanes in each direction (2 preferred) at 12 ft. max. width
- speed limit: 35 mph
- intersections regulated by traffic lights, roundabouts, or stop signs (on side streets only)
- no on-street parking
- limited curb cuts
- no access to single family homes (residential blocks access by frontage roads)
- planting strips at both edges
- regularly spaced street trees, at no more than 50 feet on center
- continuous sidewalks on both sides
- off-street bike paths on both sides (if right-of-way is wide enough): 7 ft. min. width for two-way bike traffic
- underground utilities

2.2 Boulevards

Heavily landscaped, medium volume streets, usually through residential areas

- 2 lanes in each direction at 11 ft. max. width
- speed limit: 35 mph
- on-street bike lanes: 5 ft. min. width
- intersections regulated by traffic lights or roundabouts (stop signs on side streets)
- a central landscaped median (at least 20 ft. wide) with integral turning lanes at major intersections
- no on-street parking
- direct access to private houses
- planting strips on both sides
- street trees at 30 to 50 ft. on center, depending on species
- continuous sidewalks on both sides
- underground utilities
2.3 Main Streets

Key commercial streets with mixed pedestrian and vehicular activity throughout the day and at night

- 1 lane in each direction at 10 ft. wide
- on-street (angled or parallel) parking on both sides
- bump-outs to narrow the curb-to-curb width at corners and mid-block crosswalks
- intersections regulated by traffic lights
- street section ratio: between 1:2 and 1:4
- parking lots behind buildings
- continuous sidewalks on both sides: 12 ft. wide minimum
- minimal number of curb cuts across sidewalks
- regularly spaced street trees at approx. 30 ft. on center
- places to sit, with clear views of sidewalk and street activity
- pedestrian scale lighting
- interesting details: paving, light fixtures, trash cans, benches, bike racks, public art
- underground utilities
2.4 Residential Streets

Quiet, low volume traffic streets providing access to private residences

- one travel lane in each direction at 11 ft. max. width
- intersections regulated by 4-way stop signs
- speed limit: 25mph
- on-street (parallel) parking: on one side for single-family dwellings; on both sides for apartments or condominiums
- 36 ft max. width curb-to-curb
- planting strip (min. 8 ft. wide) with street trees on both sides
- continuous sidewalks on both sides (5 ft wide min.)
- underground utilities

2.5 Alleys

Narrow, mid-block paths providing rear access to private residences

- one lane, one-way traffic
- speed limit: 10 mph
- 12 ft. wide travel route
- 5 ft. min. setback to fences, garages or other out-buildings
2.6 Parking lots

- locate to the rear or side of buildings
- devote 10% min. of parking lot to landscape, with one tree for every 8 cars
- provide adequate lighting of lot and access pathways
- preserve natural on-site drainage where possible

2.7 Crosswalks

- elevate to sidewalk level on Main Streets
- provide bulb-outs where possible to shorten the crossing distance
- use special paving where traffic calming is warranted
- coordinate with other traffic calming devices
- adequate lighting
- ramps for bicycles and the disabled
2.8 Traffic Calming Devices

- provide on Main Streets, near schools, churches, libraries etc.
- speed-bumps and dips, speed tables and special paving sections
- coordinate with location of crosswalks

2.9 Transit Stops

- located at commercial centers and near institutions, along Main Streets and primary residential roads
- clearly visible and supported by proper signage
- comfortable waiting area, sheltered by a structure or landscaping
- information about bus routes and schedules
- attractively furnished with benches, trash cans, area maps etc.
- adequately lit

2.10 Bike Paths

- properly paved, preferably in a different color or texture from the road or sidewalk
- 5 ft min. width for one-way traffic, 7 ft min. for two-way
- properly buffered (e.g. by a green strip) from vehicular streets and sidewalks
- carefully designed intersections with proper signage and transition ramps
3. Landmarks

3.1 Institutional Buildings

- distinct from the more ordinary residential and commercial fabric
- located on prime sites in the neighborhood (e.g., terminating major streets, or at major intersections)
- conveying a sense of “civic pride” (distinctive architecture, elegant landscaping, well-maintained building and grounds)
- built with durable materials
- welcoming and clearly identifiable entries
- accent lighting

3.2 Religious buildings

- distinct from the more ordinary residential and commercial fabric
- located on prime sites in the neighborhood (e.g., terminating major streets, or at major intersections)
- conveys a religious purpose through architecture (scale and form, spires, stained glass windows etc.) and religious symbols
- built with durable materials
- welcoming and clearly identifiable entries
- accent lighting
3.3 Schools

- distinct from the more ordinary residential and commercial fabric
- located on prime sites in the neighborhood (e.g. terminating major streets, or at major intersections)
- within walking distance of homes
- easily accessible by public transit
- connected to bike routes
- generous, well maintained grounds, playgrounds and sports fields
- built with durable materials
- welcoming and clearly identifiable entries
- accent lighting

3.4 Monuments

- located on prime sites (e.g. terminating major streets, at major intersections, or at the entry to neighborhood parks)
- information about the history and purpose of the monument
- landscaping that complements the monument
- nearby places to sit
- well maintained structure and setting
- accent lighting
4. Commerce

4.1 Shopping Streets

- features of a good Main Street (see Guidelines section 2.3)
- multi-level, mixed use buildings with offices or apartments above shops on the ground floor
- varied architecture with a consistent scale
- buildings line the sidewalks with no setback and minimal breaks in the continuity of active uses at the ground level
- artful and informative signs with a consistent scale and location on the buildings
- welcoming and clearly identifiable entries
- special treatment of buildings at the corner of blocks
- attractive pedestrian connections from the surrounding neighborhood
- occasional festivals and special events

4.2 Storefront windows

- display windows making up 75% min. of ground floor facades
- signage scaled to the buildings and related to the character of the street
- no temporary signs in windows
- attractive, colorful and frequently changed window displays

4.3 Sidewalk cafes and restaurants

- sidewalk service to enliven the street
- outdoor eating areas defined by ornamental fences or flower boxes
- clear sidewalk of 6 ft. min. maintained
- overhead protection, such as umbrellas or awnings
4.4 Entertainment uses

- bars, restaurants, theaters etc. all help to add activity to commercial districts, particularly at night, when retail and office uses are closed
- entertainment facilities mixed with other retail, office and residential uses

4.5 Offices

- ideally located on upper floors, above ground floor retail uses
- entrances and addresses clearly visible from the street
- upper level signage coordinated with other building signs and awnings

4.6 Light industry

- non-hazardous industries (e.g. automotive shops, metal workers, wood shops etc.) that increase neighborhood employment
- size limited to 30 employees max.
- carefully controlled noise, emissions, deliveries and other potential nuisances
- parking, loading docks and storage areas in rear and properly screened
- flexible building types, designed for easy conversion to other uses
5. Housing

5.1 General features

- welcoming and clearly identifiable entry
- direct connection from the sidewalk to the front door
- small scale, durable materials: brick, stone, wood siding
- articulated and well proportioned street facade
- porches, verandahs or balconies at least 6 ft. deep
- vertical window proportions (height to width ratio > 1.5)
- pitched roofs with min. pitch of 30 degrees
- garages in the rear
- attractively landscaped and well maintained yards
- clearly visible street names and house numbers
- densest development close to commercial areas

5.2 Houses

- maximum lot size: 1 acre
- setback from 35 to 50 ft. max. from the street

5.3 Bungalows

- lot size: from 1/4 to 1/8 acre
- setback from 20 to 35 ft. max. from the street
5.4 Townhouses

- density: 8 -12 units per acre
- setback 20 ft. max. from the street
- 4 stories max. height

5.5 Apartments

- density: 15 - 50 units per acre
- setback 20 ft. max. from the street
- 6 stories max. heights
- articulated facades (balconies, bay windows, window boxes etc.)
Scoring Your Neighborhood

Bay Village, OH
The following scoring system can be used to assess the quality of an existing neighborhood or proposed development. It is a revised version of 47 Principles To Score Your Community, the scoring system that was developed after the 2000 EcoCity Cleveland Workshop.

Like the EcoCity Cleveland model, this system divides the physical environment into a series of different components: land uses, building types, streets, bike paths and so on; each of which is scored according to how well it achieves the design characteristics outlined in the previous sections of this manual. Instead of defining an overall score for the environment, however, this system arrives at an average score which allows you to compare the quality of selected parts of a neighborhood, or areas where not all of the components are relevant.

The first step is to record your scores. The components are listed on the following pages, along with a sliding scale on which you can mark your evaluation and note a numeric score for each item. Note that some components vary from +10 to -5 points, while others range from +15 to -10. This allows for a weighting of different items, according to their impact on the overall quality of the environment.

When you have completed scoring the components, add all the scores and divide by the number of items you have checked to arrive at an average score for the environment.

The average score should be interpreted as follows:

- Great neighborhood .......................... 9 points or more
- Reasonably good neighborhood ............ 5 to 8 points
- Barely adequate neighborhood ............. 1 to 4 points
- Weak neighborhood .......................... 0 points or less

### Urban Structure

1. **Signs of entry**
   Is it easy to tell when you have entered the town or neighborhood? (The sense of entering a defined area can be created by crossing clear boundaries like a river or stretch of open space, by passing through well marked gateways or points of entry, or by noticing changes in the architectural or landscape character of the surroundings.)

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>No apparent signs of entry</td>
</tr>
<tr>
<td>0</td>
<td>Only residents would recognize the signs</td>
</tr>
<tr>
<td>+5</td>
<td>Area is clearly defined</td>
</tr>
</tbody>
</table>

Score: ____

2. **Town center**
   Is there a town or neighborhood center with a concentration of different uses, such as retail and restaurants, offices, government services, apartments and entertainment functions?

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>No center</td>
</tr>
<tr>
<td>-5</td>
<td>Weak center</td>
</tr>
<tr>
<td>0</td>
<td>Strong center</td>
</tr>
</tbody>
</table>

Score: ____

3. **Community places**
   Does the town or neighborhood include a public square, park or special street where people meet and spend time together, and where they hold occasional festivals or community events?

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>No community places</td>
</tr>
<tr>
<td>-5</td>
<td>Yes, but I wouldn't want to go there</td>
</tr>
<tr>
<td>0</td>
<td>Several attractive places</td>
</tr>
</tbody>
</table>

Score: ____

4. **Density gradient**
   Does the density of development increase towards the town or neighborhood center, with the lowest concentrations of development on the periphery?

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>Does not conform</td>
</tr>
<tr>
<td>0</td>
<td>Partially conforms</td>
</tr>
<tr>
<td>+5</td>
<td>Completely conforms</td>
</tr>
</tbody>
</table>

Score: ____
5. **Street pattern**
   Are the streets of the town or neighborhood laid out in a reasonably understandable pattern, so that you can find your way through the area even if you don’t know it well?

   -5  0  +5  +10  +15
   Area is totally confusing  Only residents understand it  Very legible street pattern

   **Score:**

6. **Connected streets**
   Do the streets create an interconnected network that allows several different ways to get from place to place in the town or neighborhood?

   -5  0  +5  +10  +15
   Streets not interconnected  Partial network  Well connected network

   **Score:**

7. **Street hierarchy**
   Is the street system organized in a clear hierarchy, from high traffic arterial roads, to major streets carrying medium volumes of traffic, to bustling commercial street, to quiet residential roads and alleys?

   -5  0  +5  +10  +15
   No hierarchy - all the streets are the same  Partial hierarchy  Clear hierarchy

   **Score:**

8. **Block size**
   Are the blocks generally small, with reasonably short distances between street intersections?

   -10  -5  0  +5  +10
   Blocks are 1,000 feet or more  Average about 600 feet  Blocks are 300 feet or less

   **Score:**

Total score for Urban Structure: 

---

**Getting around**

9. **Avenues**
   Are the busiest streets through the town or neighborhood designed as efficient avenues with 2 or 3 lanes in each direction, limited curb cuts, underground utilities, continuous sidewalks and planting strips with street trees on both sides? (see examples, pp.26-27; and Guideline 2.1, pp.52-53)

   -5  0  +5  +10  +15
   Does not conform  Partially conforms  Completely conforms

   **Score:**

10. **Major streets**
    Are medium traffic streets designed as shady boulevards with 1 or 2 lanes in each direction, a central landscaped median with integral turning lanes, limited curb cuts, underground utilities, continuous sidewalks and generous planting strips with street trees on both sides? (see examples, pp.28-29; and Guideline 2.2, pp.52-53)

    -5  0  +5  +10  +15
    Does not conform  Partially conforms  Completely conforms

    **Score:**

11. **Commercial streets**
    Are streets in the town center or commercial areas designed as busy, pedestrian-friendly places with 1 lane in each direction, on-street parking, underground utilities, well marked crosswalks and comfortable, sheltered sidewalks? (see examples, pp.30-31; and Guideline 2.3, pp.54-55)

    -5  0  +5  +10  +15
    Does not conform  Partially conforms  Completely conforms

    **Score:**

12. **Residential streets**
    Are streets through residential areas designed as quiet, shady lanes with 1 lane of traffic in each direction, on-street parking on one or both sides, underground utilities, tree lawns of at least 6 feet in width with large, regularly spaced trees, and continuous sidewalks, at least 5 feet wide, on both sides of the street? (see examples, pp.32-33; and Guideline 2.4, pp.56-57)

    -5  0  +5  +10  +15
    Does not conform  Partially conforms  Completely conforms

    **Score:**
13. **Alleys**

Are there mid-block alleys, of 12 to 18 feet in width, providing access to parking lots and garages? (see examples, pp.34-35; and Guideline 2.5, pp.56-57)

-5 | 0 | +5 | +10 | +15
---|---|---|---|---
No alleys | Only a few alleys | Alleys everywhere

**Score:** _____

14. **Rural roads**

Have roads outside the town or neighborhood maintained their rural character, free of commercial development, residential sub-divisions, and the characteristics of urban streets such as curbs, sidewalks and regularly spaced trees?

-10 | -5 | 0 | +5 | +10
---|---|---|---|---
Not preserved | Partially preserved | Well preserved

**Score:** _____

15. **Traffic calming**

Besides posted speed limits, have streets where there are potential conflicts between pedestrians and cars been designed with traffic calming measures such as stop signs, tight corners, changes in paving, speed tables and speed bumps or dips? (see Guideline 2.8, pp.60-61)

-5 | 0 | +5 | +10 | +15
---|---|---|---|---
No traffic calming | Limited traffic calming | Extensive traffic calming

**Score:** _____

16. **On-street parking**

Is on-street parking permitted on all streets except arterial roads carrying heavy traffic?

-5 | 0 | +5 | +10 | +15
---|---|---|---|---
Not permitted anywhere | Limited on-street parking | Permitted everywhere

**Score:** _____

17. **Off-street parking**

Are off-street parking lots and garages generally located behind buildings, at the back of the site?

-10 | -5 | 0 | +5 | +10
---|---|---|---|---
Usually in front of buildings | Varies side, front and back | Always behind buildings

**Score:** _____

18. **Parking lot design**

Are parking lots well lit and designed with adequate landscaping, including perimeter fences or hedges and approximately 1 shade tree for every 8 parking spaces? (see Guideline 2.6, pp.58-59)

-10 | -5 | 0 | +5 | +10
---|---|---|---|---
Lots do not conform | Partial conformity | Complete conformity

**Score:** _____

19. **Sidewalks**

Are there continuous, attractively paved, safe sidewalks on all streets, at least 5 feet wide in residential areas and 10 feet wide in commercial areas?

-10 | -5 | 0 | +5 | +10
---|---|---|---|---
There are few sidewalks | Partial conformity | Sidewalks conform

**Score:** _____

20. **Crosswalks**

Are crosswalks well marked throughout the area, with special paving, at narrowed sections of the street and/or elevated to sidewalk level? (see Guideline 2.7, pp.58-59)

-5 | 0 | +5 | +10 | +15
---|---|---|---|---
There are few crosswalks | Only painted crosswalks | Crosswalks conform

**Score:** _____

21. **Public transit**

Is the town or neighborhood well served by public transit, with clearly visible, well appointed transit stops that offer a comfortable place to wait and ample information about transit routes and service? (see Guideline 2.9, pp.60-61)

-5 | 0 | +5 | +10 | +15
---|---|---|---|---
No transit service | Limited transit | Excellent transit

**Score:** _____

22. **Bike paths**

Is it easy to get around the town or neighborhood by bike, with dedicated bike lanes on major streets and bike racks at key destinations? (see Guideline 2.10, pp.60-61)

-5 | 0 | +5 | +10 | +15
---|---|---|---|---
There are no bike paths | Limited biking facilities | Excellent biking facilities

**Score:** _____

**Total score for Getting Around:** _____
Civic places
(see examples, pp.36-37 and Guidelines 3.1-3.4, pp.62-65)

23. Siting
Are important public buildings—like town halls, post offices, libraries, churches and schools—located on prominent sites such as adjacent to a town square or park, at key intersections, or at the end of major streets?

| Score: ___ |
| None on special sites | Some on special sites | All on prominent sites |

27. Landscape setting
Do public buildings include attractively landscaped, well maintained outdoor spaces with comfortable places to sit, public art and interpretive information about the history of the neighborhood or key figures of the community?

| Score: ___ |
| No outdoor spaces | Medically spaces | Attractive outdoor spaces |

Total score for Civic Places: ___

24. Location
Are public functions conveniently located? For example, town hall and library near a commercial center, churches and schools in residential areas.

| Score: ___ |
| None conveniently located | Some conveniently located | All conveniently located |

28. Mix of uses
As well as retail, do commercial areas include other uses, such as restaurants and entertainment, offices, and apartments or condominiums, preferably on the upper floors of 2 to 4 story buildings?

| Score: ___ |
| Only retail | Some other uses | Rich mix of uses |

25. Architectural character
Are public buildings designed as neighborhood landmarks, constructed of durable materials with distinctive architecture and appropriate symbolic elements, such as the city seal over the door of a town hall or stained glass windows in a church?

| Score: ___ |
| No architectural landmarks | Some landmarks | All impressive landmarks |

29. Continuity
Do the buildings in commercial areas line the sidewalk and maintain a continuous frontage of active uses and interesting window displays, unbroken by parking lots, vacant sites or blank walls?

| Score: ___ |
| Isolated, setback buildings | Some breaks | Completely continuous |

30. Sidewalks
Are the sidewalks a comfortable width, and are there plenty of places to sit and watch the passing parade, with sun in winter and shade in the summer?

| Score: ___ |
| Uncomfortable sidewalks | Moderately comfortable | Very comfortable |
31. Sidewalk activity
   Are the sidewalks enlivened with outdoor dining, sidewalk sales, buskers and
   performance artists, and occasional fairs and festivals?
   -10  -5  0  +5  +10
   Boring sidewalks  Same sidewalk activity  Lively sidewalks
   Score: _____

32. Building scale
   Are the buildings tall enough to create a comfortable sense of enclosure to
   the street or town square? (Section Ratio, see Guideline 1.1, p. 48)
   -5  0  +5  +10  +15
   No sense of enclosure  Moderate enclosure  Strong sense of enclosure
   Score: _____

33. Architectural character
   Are the buildings varied but coordinated in character, constructed of similar
   materials, with compatible colors, windows of similar proportions and repetitive
details?
   -5  0  +5  +10  +15
   Uncordinated buildings  Moderately coordinated  Well coordinated buildings
   Score: _____

34. Signage
   Do the signs clearly identify the tenants in the area, with artful and interesting
designs that are coordinated in size, type and placement on the buildings?
   -5  0  +5  +10  +15
   Uncordinated signage  Adequate signage  Artful and informative signage
   Score: _____

35. Lighting
   Is the commercial area adequately lit at night, with safe and welcoming
   sidewalks, parking lots and pedestrian and bike paths leading to the center?
   -10  -5  0  +5  +10
   Dark and dangerous  Adequate lighting  Bright and safe
   Score: _____

36. Surrounding development
   Is there a significant density of development within walking distance of the
   commercial center, including apartments and townhouses, artists' workshops and
   small, non-hazardous industries like automotive shops and wood shops or cabinet
   makers?
   -5  0  +5  +10  +15
   Very little nearby  Moderate nearby development  Significant nearby development
   Score: _____

   Total score for Commercial Areas: _____

36. Housing types
   Does the town or neighborhood offer a variety of unit types and sizes,
   including rental apartments, condominiums, townhouses and single family homes?
   -10  -5  0  +5  +10
   Housing is all the same  Only 2 or 3 types  Complete range of housing types
   Score: _____

37. Orderly streets
   Do the houses and apartment buildings on a residential block maintain a
   consistent setback, with generally similar spacing between buildings?
   -10  -5  0  +5  +10
   Varied setbacks and spacing  Moderately consistent  Consistent
   Score: _____

38. Building entries
   Do the houses and apartment buildings in the neighborhood have clearly
   visible and welcoming entries, with access paths connecting directly to the public
   sidewalk?
   -5  0  +5  +10  +15
   Hidden entries  Semi-visible  Accessible, welcoming entries
   Score: _____
39. Porches and balconies
Are residential buildings generally designed with front porches or balconies that provide a comfortable place for residents to take part in the life of the street?

Score:

Total score of Residential Areas:

Open space and landscape

40. Types of open space
Does the town or neighborhood offer a variety of active and passive outdoor recreation opportunities, including playing fields, children's playgrounds and natural areas for walking, biking and bird watching?

Score:

41. Landscape species
Are a variety of species used in the landscaping of open spaces and streets, including the indigenous plant materials of the region and drought tolerant species?

Score:

42. Natural areas
Are sensitive natural environments like wetlands, watersheds, steep slopes and significant stands of mature trees preserved?

Score:

43. Views
Have important distant and local views been protected with open space corridors and development restrictions?

Score:

44. Rural surroundings
Have prime farmlands, rural roads and historic farmsteads in the surrounding area been preserved?

Score:

Total score for Open Space and Landscape:

Calculation of Quality Index

Score for Urban Structure (from box on page 78)
Score for Getting Around (from box on page 81)
Score for Civic Places (from box on page 83)
Score for Commercial Areas (from box on page 85)
Score for Residential Areas (from box on page 86)
Score for Open Space and Landscape (from box above)

Total score:

Number of items scored (44 or less)

Quality Index
(Total score divided by number of items)
Glossary

- a limited collection of common building and planning terms, likely to be encountered in public presentations of private development projects or city proposals related to the quality of the physical environment.
Adaptive reuse: the conversion of a building to a use other than that for which it was originally built.

Affordable housing: subsidized housing designed for those whose incomes generally deny them the opportunity to purchase or rent housing on the open market.

Air rights: the development rights of the space above a piece of land and its existing ground level use.

Amenity strip: the area of a sidewalk closest to the curb that includes trees, lights, trash cans and other elements of street furniture. Amenity strips are often paved in decorative materials such as brick or concrete pavers.

Ancillary use: a subsidiary use connected to the main use of a building or property, such as a garage or storage shed.

Architrave: a decorative element used to cover the joint between a window or door frame and the wall above the opening.

Arterial: a highway, usually within a 120-foot right-of-way, for through traffic with controlled access to minimize interruptions to the flow of traffic.

Balustrade: a railing made up of a top rail, balusters and usually a bottom rail used on the edge of stairs, balconies and porches.

Barge (or barge board): the finishing at the gable end of a roof, fixed parallel to the roof slope.

Bay window: a square or polygonal window space projecting from a wall of a building.

Bearing wall: a wall that supports any vertical load in addition to its own weight.

Box gutter: a gutter not at an eave, typically at the base of two opposing roof slopes.

Bulkhead: the base that supports a storefront display window; usually made from wood, brick, stone or glass.

Built-up roof: a roofing composed of 3 to 5 layers of asphalt felt covered with coal tar, pitch or asphalt; generally used on flat or low-pitched roofs.

Capping: a waterproofing cover at the top of a gap, typically at the ridge of a pitched roof.

Charrette: a brief, intense design workshop that brings the members of a community together to discuss their concerns about the current state of a neighborhood or district, and to explore possibilities for its future improvement.

Cladding: the non-loadbearing “skin” of the walls or roof of a building that keeps the weather out; more usually called “siding”.

Column: a vertical supporting member, circular or rectangular in section, usually consisting of a base, shaft and capital.

Corner board: a trim for the external corners of a house or other structure against which the ends of the siding are finished.

Cornice: a projecting horizontal band or molding between floors or at the top of a building which helps to protect the windows and walls below it from water drips.

Crawl space: a shallow space below the first floor of a building, usually enclosed by the foundation wall.

Curtain wall: an exterior wall supported entirely by the structural frame of a building and carrying no loads other than its own weight and wind loads.

Density: the amount of development in an area, usually expressed in units per acre for housing, and floor area ratio for commercial uses (see FAR).

Dormer: an enclosed opening in a sloping roof which projects out of the roof to create a vertical wall suitable for windows or other openings.

Down pipe (or down spout): a pipe carrying roof water from gutters and roof catchments to drains or storage tanks.

Dressing: a building’s ornamental detail such as the molded framework around doors and window openings.

Eaves: the margin or lower part of a roof projecting over the wall.

EIS and EIR: Environmental Impact Statement and Report. The former is a federally mandated review of the impacts of any project supported by federal funds; the latter is a State or local required review.

Expansion joint: a bituminous fiber strip inserted in a long run of cladding, gutter, flashing or paving to allow for thermal expansion and contraction.

Facade: the front of a building or any of its sides that face a public right-of-way.

FAR (floor area ratio): the ratio of the area of usable space in a development — usually excluding service areas, stairwells, elevator shafts, dead storage and parking areas— to the area of the site.

Fascia (or fascia board): a board, or rolled metal product of similar dimensions, fixed along the eaves, to which a gutter is secured.

Flashing: a material, usually metal, used to waterproof the junction between two intersecting roof and/or wall surfaces. In a masonry wall, it is often built into the mortar joints between masonry blocks.

Footing: a rectangular masonry section, usually concrete, that supports a foundation wall or pier.
Foundation: the supporting portion of a structure below the first floor construction, or below grade, including the footings.

Frieze: a decorative horizontal band that is frequently combined with a cornice to emphasize the horizontal division(s) of a building façade.

Gable (or gable end): the triangular part of the end wall of a building with a sloping roof—hence a “gable roof” which is a sloping roof with a gable at one or both ends.

Green building: practices that consider the impacts of buildings on the local, regional and global environment, energy and water efficiency, reduction of operation and maintenance costs, minimization of construction waste, and eliminating the use of harmful building materials.

Gross floor area (GFA): the total number of square feet of floor area in a building.

Gutter: a channel that collects roof water and carries it to an outlet such as a down pipe.

Hip roof: a roof that rises by inclined planes from all four sides of a building.

Historic preservation: the maintenance and repair of a building, site or street to retain its form as it was originally constructed or has evolved over time.

Hood mold: a projecting molding over a window or door that helps to throw rainwater away from the opening.

Impervious surface: a surface such as pavement or building that water cannot penetrate.

Infill development: development that takes place on vacant or underutilized sites within an area that is already characterized by urban development and has access to urban services.

Infrastructure: the basic facilities and services needed for the functioning of a community, such as transportation and communications systems, water and power lines, and public institutions such as schools and post offices.

Jamb: the side and head lining of a window, door or other opening.

Land use: the types of buildings or activities in an area or on a specific site—to be distinguished from zoning which is the regulation of existing and future land uses.

LEED Certification: “LEED” is an acronym for Leadership in Energy and Environmental Design. LEED Certification is awarded to buildings that demonstrate a commitment to environmental sustainability by meeting stringent performance standards.

Level of service (LOS): a set of operating conditions describing the ability of a road network to handle traffic; ranging from Level A which indicates unimpeded traffic, to Level F which indicates gridlock.

Lintel: a horizontal structural member that supports the load over an opening such as a door or window.

Lot coverage: the percentage of a lot that is covered by buildings and areas for vehicular access and parking.

Mansard: a roof built at two pitches, the steeper pitch commencing at the eaves and the flatter pitch finishing at the ridge.

Masonry: stone, brick, concrete, concrete block or other similar building materials bonded together with mortar to form a wall, pier, buttress or similar mass.

Molding: a decorative wood strip with a coned or projecting profile.

Mullion: a vertical dividing member of a frame between the lights of a door or window, which may be further subdivided into panes by muntins or glazing bars.

Muntin: a subsidiary framing member in the lights of a door or window, dividing it into window panes.

Node: a location along a street—at a major intersection or transit stop—that consists of a concentration of high-intensity, mixed-use development.

Nonconforming use: a use that is prohibited by, or does not conform to, the zoning regulations for the site.

Parapet: a low, protective wall or extension of the building façade that extends above the line of the eaves.

Pedestrian-oriented design: design that emphasizes travel on foot rather than by car.

Pier: a buttress bonded to a wall to increase its stability.

Planting strip: the landscaped area between the curb and the sidewalk; usually planted with lawn and trees.

Ponding: a pool of undrained water on a roof, driveway, or other paved surface.

Pilaster: a rectangular pier or buttress with a capital, shaft and base (similar to a column) that projects from the face of a wall.

Rafter: a structural member that supports a roof. The rafters of a flat roof are sometime called roof joists.

Reclamation: restoring a contaminated or otherwise degraded site or district to active use, such as returning strip-mined land to development sites by recontouring and replanting.
Rehabilitation: repairing or converting a building to a new use while retaining the property's historic character.

Restoration: restoring a building to its form at a particular point in time while removing evidence of other periods.

Reveal: the part of the jamb that is visible between the outer wall surface and a window or door frame.

Right-of-way: (a) the public strip of land on which a street, railroad, transit line or other public utility is built; (b) the legal right to pass through another's property.

Sash: a window's fixed or movable framework in which the panes of glass are set.

Setback: the distance between a building, driveway or parking lot and the nearest property line or other buildings.

Sill: the ledge formed by a horizontal member at the base of a window.

Soffit: the underside of an overhanging cornice or eave.

Stile: a vertical member that frames a panel of glass or other material.

Streetscape: the environment of the public right-of-way as defined by the activities it contains, adjacent buildings, landscape and street furniture.

Stud: a wood or metal structural member placed as a supporting element in walls and partitions.

Sustainability (or sustainable development): defined by the Brundtland Commission in 1987 as “development which meets present needs without compromising the ability of future generations to achieve their own needs and aspirations.” The World Conservation Union’s definition of 1991 is also useful: “improving the quality of life while living within the carrying capacity of supporting ecosystems.”

Traffic calming: traffic management measures specifically designed to reduce the speed of vehicles.

Transom: a panel or series of panels, usually made of glass, located above a door or display window.

Variance: exception to the requirements of the existing zoning, granted on application by the property owner.

Zoning: the classification of land by types of uses and densities permitted and prohibited in a district, including regulations regarding the location of a building on a lot.